Indolicidin is a broad-spectrum antimicrobial peptide (AMP) with great therapeutic potential; however, high manufacturing costs associated with industrial-scale chemical synthesis have limited its delivery. Therefore, the use of recombinant DNA technology to produce this peptide is urgently needed. In this study, a new methodology for the large-scale production of a novel bovine AMP was developed. LNK-16 is an analogue of indolicidin that contains a kallikrein protease site at its C-terminus. The amino acid sequence of LNK-16 was synthesized using Escherichia coli-preferred codons. Three copies of the target gene were assembled in series by overlapping PCR and cloned into pET-30a(+) for the expression of His-(LNK-16)(3) in E. coli BL21 (DE3) cells. The expressed fusion protein His-(LNK-16)(3) was purified by Ni(2+)-chelating chromatography and then cleaved by kallikrein to release LNK-16. The recombinant LNK-16 peptide showed antimicrobial activity similar to that of chemically synthesized LNK-16 and indolicidin. Together, these data indicate that the use of serial expression can improve the large-scale production of AMPs for clinical and research applications.