A GaN vertical light emitting diode (LED) based on the novel lift-off method was demonstrated by high temperature regrowth over nanoporous (NP) GaN template formed by electrochemical (EC) etching. A two-step EC etching process was employed on a SiO2 patterned GaN surface to fabricate a nanoporous template with a controlled porosity profile, which enabled better structural stability than a single NP GaN. During the regrowth of LED structures, the high porosity GaN layer produced large coalesced voids due to the thermal deformation of nanopores. LED layers were then separated from the sapphire substrate and transferred to a Mo substrate by the removal of the SiO2 mechanical supporters that held the LED structure to suppress cracks and damage during the process. The vertical LEDs fabricated using this technique showed improved optical power emission as well as low series resistance.