Simple circuit models provide valuable insight into the properties of plasmonic resonators. Yet, it is unclear how the circuit elements can be extracted and connected in the model in an intuitive and accurate manner. Here, we present a detailed treatment for constructing such circuits based on energy and charge oscillation considerations. The accuracy and validity of this approach was demonstrated for a gold nanorod, and extended for a split-ring resonator with varying gap sizes, yielding good intuitive and quantitative agreement with full electromagnetic simulations.