Double blockade of CD14 and complement C5 abolishes the cytokine storm and improves morbidity and survival in polymicrobial sepsis in mice

J Immunol. 2014 Jun 1;192(11):5324-31. doi: 10.4049/jimmunol.1400341. Epub 2014 Apr 30.

Abstract

Sepsis and septic shock, caused by an excessive systemic host-inflammatory response, are associated with high morbidity and mortality. The complement system and TLRs provide important pattern recognition receptors initiating the cytokine storm by extensive cross-talk. We hypothesized that double blockade of complement C5 and the TLR coreceptor CD14 could improve survival of experimental polymicrobial sepsis. Mice undergoing cecal ligation and puncture (CLP)-induced sepsis were treated with neutralizing anti-CD14 Ab biG 53, complement C5 inhibitor coversin (Ornithodoros moubata C inhibitor), or a combination thereof. The inflammatory study (24-h observation) revealed statistically significant increases in 22 of 24 measured plasma biomarkers in the untreated CLP group, comprising 14 pro- and anti-inflammatory cytokines and 8 chemokines, growth factors, and granulocyte activation markers. Single CD14 or C5 blockade significantly inhibited 20 and 19 of the 22 biomarkers, respectively. Combined CD14 and C5 inhibition significantly reduced all 22 biomarkers (mean reduction 85%; range 54-95%) compared with the untreated CLP group. Double blockade was more potent than single treatment and was required to significantly inhibit IL-6 and CXCL1. Combined inhibition significantly reduced morbidity (motility and eyelid movement) and mortality measured over 10 d. In the positive control CLP group, median survival was 36 h (range 24-48 h). Combined treatment increased median survival to 96 h (range 24-240 h) (p = 0.001), whereas survival in the single-treatment groups was not significantly increased (median and range for anti-CD14 and anti-C5 treatment were 36 h [24-48 h] and 48 h [24-96 h]). Combined with standard intervention therapy, specific blockade of CD14 and C5 might represent a promising new therapeutic strategy for treatment of polymicrobial sepsis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Neutralizing / immunology
  • Antibodies, Neutralizing / pharmacology*
  • Complement C5 / antagonists & inhibitors*
  • Complement C5 / immunology*
  • Cytokines / immunology*
  • Lipopolysaccharide Receptors / immunology*
  • Male
  • Mice
  • Sepsis / drug therapy
  • Sepsis / immunology*
  • Sepsis / microbiology
  • Time Factors

Substances

  • Antibodies, Neutralizing
  • Complement C5
  • Cytokines
  • Lipopolysaccharide Receptors