Benzyl alcohol attenuates acetaminophen-induced acute liver injury in a Toll-like receptor-4-dependent pattern in mice

Hepatology. 2014 Sep;60(3):990-1002. doi: 10.1002/hep.27201. Epub 2014 Jul 14.

Abstract

Acetaminophen (APAP) toxicity is the most common cause of acute liver failure in industrialized countries. Understanding the mechanisms of APAP-induced liver injury as well as other forms of sterile liver injury is critical to improve the care of patients. Recent studies demonstrate that danger signaling and inflammasome activation play a role in APAP-induced injury. The aim of these investigations was to test the hypothesis that benzyl alcohol (BA) is a therapeutic agent that protects against APAP-induced liver injury by modulation of danger signaling. APAP-induced liver injury was dependent, in part, on Toll-like receptor (TLR)9 and receptor for advanced glycation endproducts (RAGE) signaling. BA limited liver injury over a dose range of 135-540 μg/g body weight or when delivered as a pre-, concurrent, or post-APAP therapeutic. Furthermore, BA abrogated APAP-induced cytokines and chemokines as well as high-mobility group box 1 release. Moreover, BA prevented APAP-induced inflammasome signaling as determined by interleukin (IL)-1β, IL-18, and caspase-1 cleavage in liver tissues. Interestingly, the protective effects of BA on limiting liver injury and inflammasome activation were dependent on TLR4 signaling, but not TLR2 or CD14. Cell-type-specific knockouts of TLR4 were utilized to further determine the protective mechanisms of BA. These studies found that TLR4 expression specifically in myeloid cells (LyzCre-tlr4-/-) were necessary for the protective effects of BA.

Conclusion: BA protects against APAP-induced acute liver injury and reduced inflammasome activation in a TLR4-dependent manner. BA may prove to be a useful adjunct in the treatment of APAP and other forms of sterile liver injury.

MeSH terms

  • Acetaminophen / toxicity
  • Analgesics, Non-Narcotic / toxicity
  • Animals
  • Benzyl Alcohol / therapeutic use*
  • Cells, Cultured
  • Chemical and Drug Induced Liver Injury / etiology
  • Chemical and Drug Induced Liver Injury / metabolism*
  • Chemical and Drug Induced Liver Injury / prevention & control*
  • HMGB1 Protein / physiology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Random Allocation
  • Receptor for Advanced Glycation End Products
  • Receptors, Immunologic / physiology
  • Toll-Like Receptor 4 / deficiency
  • Toll-Like Receptor 4 / physiology*

Substances

  • Analgesics, Non-Narcotic
  • HMGB1 Protein
  • HMGB1 protein, mouse
  • Receptor for Advanced Glycation End Products
  • Receptors, Immunologic
  • Tlr4 protein, mouse
  • Toll-Like Receptor 4
  • Acetaminophen
  • Benzyl Alcohol