Interleukin-1β (IL-1β) and interleukin-17A (IL-17A) are inducible factors and important cytokines in the pathogenesis of rheumatoid arthritis (RA). In the present study, three bispecific and neutralizing antibodies (BsAB-1, BsAB-2 and BsAB-3) against both hIL-1β and hIL-17A were constructed, their therapeutic efficacy was compared on collagen induced arthritis (CIA) model mice. In vitro assays demonstrated that the three antibodies could simultaneously bind to target both hIL-1β and hIL-17A. Mice with CIA were subcutaneously administered with one of three antibodies every two days for 29 days, we noticed that, compared with the BsAB-2 and BsAB-3, BsAB-1 antibody therapy resulted in more significant effect on alleviating the severity of arthritis by preventing bone damage and cartilage destruction and substantially decreasing production of CII-specific antibodies. In addition, BsAB-1 antibody was more potent in the inhibition of mRNA expression of IL-2, IL-1β, IL-17A, TNF-α and MMP-3 in the spleen of CIA mice compared to the other two. In summary, BsAB-1 is superior over BsAB-2 and BsAB-3 for the treatment of RA model mice, and may be chosen as an ideal candidate for further development of therapeutic drugs for treatment of RA.
Keywords: Bispecific antibody; IL-17A; IL-1β; Rheumatoid arthritis (RA).
Copyright © 2014 Elsevier B.V. All rights reserved.