A novel oncogenic role of inositol phosphatase SHIP2 in ER-negative breast cancer stem cells: involvement of JNK/vimentin activation

Stem Cells. 2014 Aug;32(8):2048-60. doi: 10.1002/stem.1735.

Abstract

Overexpression of SH2-containing-5'-inositol phosphatase-2 (SHIP2) correlates with poor survival in breast cancer. However, its role in breast cancer stem cells (BCSCs) remains unclear. Here, we showed that the percentage of SHIP2(+) cells was positively correlated with that of CD24(-) CD44(+) cells in 60 breast cancer specimens. Among 20 estrogen receptor (ER)-negative samples, 17 had greater SHIP2 expression in CD24(-) CD44(+) subpopulation than the remaining subpopulation. Data mining of microarray analysis of 295 breast tumors showed a significant correlation of higher SHIP2 expression with distant metastasis. Examination of patient-derived mouse xenografts revealed that SHIP2 protein and its tyrosine 1135 phosphorylation were significantly higher in BCSCs, identified as CD24(-) CD44(+) or aldehyde dehydrogenase (ALDH(+)), than non-BCSCs. SHIP2 silencing or inhibitor of SHIP2 phosphatase significantly decreased mammosphere-forming efficiency, ALDH(+) subpopulation in vitro and tumorigenicity of BCSCs in vivo. Overexpression of SHIP2 enhanced the expression of epithelial-mesenchymal transition markers including vimentin (VIM), which was mainly expressed in ER-negative breast cancer cells with higher level in mammospheres than monolayer culture. Ablation of c-Jun N-terminal kinase 1 (JNK1), JNK2, or VIM diminished the increased ALDH(+) population and tumorigenicity, induced by SHIP2 overexpression. BCSCs displayed greater expression of phospho-JNK than non-BCSCs and silencing of JNK suppressed SHIP2-mediated upregulation of VIM. Furthermore, SHIP2 overexpression enhanced Akt activation, but Akt inhibition failed to influence SHIP2-induced phospho-JNK/VIM upregulation. In conclusion, SHIP2 plays a key role in BCSCs of ER-negative breast cancers through activation of Akt and JNK with upregulation of VIM and may serve as a target for therapy directed at BCSCs.

Keywords: Breast cancer stem cells; JNK; SHIP2; Vimentin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blotting, Western
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Enzyme Activation / physiology
  • Epithelial-Mesenchymal Transition / physiology
  • Female
  • Flow Cytometry
  • Heterografts
  • Humans
  • MAP Kinase Kinase 4 / metabolism*
  • Mice
  • Mice, Inbred NOD
  • Mice, SCID
  • Neoplastic Stem Cells / metabolism*
  • Neoplastic Stem Cells / pathology
  • Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
  • Phosphoric Monoester Hydrolases / metabolism*
  • Real-Time Polymerase Chain Reaction
  • Receptors, Estrogen / biosynthesis
  • Vimentin / metabolism*

Substances

  • Receptors, Estrogen
  • Vimentin
  • MAP Kinase Kinase 4
  • Phosphoric Monoester Hydrolases
  • INPPL1 protein, human
  • Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases