We created a fast, robust and general C+ + implementation of a single-nucleotide polymorphism (SNP) set enrichment algorithm to identify cell types, tissues and pathways affected by risk loci. It tests trait-associated genomic loci for enrichment of specificity to conditions (cell types, tissues and pathways). We use a non-parametric statistical approach to compute empirical P-values by comparison with null SNP sets. As a proof of concept, we present novel applications of our method to four sets of genome-wide significant SNPs associated with red blood cell count, multiple sclerosis, celiac disease and HDL cholesterol.
Availability and implementation: http://broadinstitute.org/mpg/snpsea.
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author 2014. Published by Oxford University Press.