Final state of a perturbed liquid film inside a container under the effect of solid-liquid molecular forces and gravity

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):043010. doi: 10.1103/PhysRevE.89.043010. Epub 2014 Apr 9.

Abstract

We investigate theoretically the possible final stationary configurations that can be reached by a laterally confined uniform liquid film inside a container. The liquid is under the action of gravity, surface tension, and the molecular interaction with the solid substrate. We study the case when the container is in an upright position as well as when it is turned upside down. The governing parameters of the problem are the initial thickness of the film, the size of the recipient that contains the liquid, and a dimensionless number that quantifies the relative strength of gravity with respect to the molecular interaction. The uniform film is always a possible final state and depending on the value of the parameters, up to three different additional final states may exist, each one consisting in a droplet surrounded by a thin film. We derive analytical expressions for the energy of these possible final configurations and from these we analyze which state is indeed reached. A uniform thin film may show three different behaviors after a perturbation: The system recovers its initial shape after any perturbation, the fluid evolves towards a drop (if more than one is possible, it tends toward that with the thinnest precursor film) for any perturbation, or the system ends as a uniform film or a drop depending on the details of the perturbation.

Publication types

  • Research Support, Non-U.S. Gov't