The influence of inorganic and organic forms of selenium (Se) on human antibody production was studied in a Pokeweed Mitogen (PWM)-driven in vitro system. Mitogen-stimulated peripheral blood mononuclear cells (PBMC) of eight healthy donors were cultured with different Se compounds at concentrations between 10(-3) and 10(-9) M. At high Se levels (10(-3)-10(-4) M), IgM and IgG production of all donors were strongly inhibited owing to reduced cell viability. However, in five of eight donors, low levels of Se enhanced IgG secretion. This was most effective in the presence of inorganic Se, whereas selenomethionine and selenocystine were less effective. In contrast to IgG, IgM synthesis was significantly reduced by low Se levels in five donors. No significant correlation between donor serum Se levels and antibody production in vitro was found. The addition of low levels of Se to PBMC, stimulated with PHA or PWM, showed no effect on proliferation, whereas a high concentration (5 x 10(-3) M) of sodium selenite and selenocystine suppressed proliferation owing to reduced cell viability. Thus, the present results show that Se supplementation can enhance human antibody production and, moreover, suggest some selectivity of Se action on human immune responses that may result in increased switching from IgM to IgG production.