Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive muscle paralysis. Currently clinical tools for ALS diagnostics do not perform well enough and their improvement is needed. The objective of this study was to identify specific protein alterations related to the development of ALS using tiny muscle biopsies. We applied a shotgun proteomics and quantitative dimethyl labeling in order to analyze the global changes in human skeletal muscle proteome of ALS versus healthy subjects for the first time. 235 proteins were quantified and 11 proteins were found significantly regulated in ALS muscles. These proteins are involved in muscle development and contraction, metabolic processes, enzyme activity, regulation of apoptosis and transport activity. In order to eliminate a risk to confuse ALS with other denervations, muscle biopsies of patients with postpolio syndrome and Charcot-Marie-Tooth disease (negative controls) were compared to those of ALS and controls. Only few proteins significantly regulated in ALS patients compared to controls were affected differently in negative controls. These proteins (BTB and kelch domain-containing protein 10, myosin light chain 3, glycogen debranching enzyme, transitional endoplasmic reticulum ATPase), individually or as a panel, could be selected for estimation of ALS diagnosis and development.
Biological significance: ALS is a devastating neurodegenerative disease, and luckily, very rare: only one to two people out of 100,000 develop ALS yearly. This fact, however, makes studies of ALS very challenging since it is very difficult to collect the representative set of clinical samples and this may take up to several years. In this study we collected the muscle biopsies from 12 ALS patients and compared the ALS muscle proteome against the one from control subjects. We suggested the efficient method for such comprehensive quantitative analysis by LC-MS and performed it for the first time using human ALS material. This gel- and antibody-free method can be widely applied for muscle proteome studies and has been used by us for revealing of the specific protein alterations associated with ALS.
Keywords: Amyotrophic lateral sclerosis (ALS); Dimethyl labeling quantitative proteomics; Mass spectrometry (MS); Muscle biopsy.
Copyright © 2014 Elsevier B.V. All rights reserved.