Hypoxia-inducible factor-1 (HIF-1) is the central mediator of cellular responses to low oxygen and vital to many aspects of cancer biology. In a search for HIF-1 inhibitors, we identified celastrol as an inhibitor of HIF-1 activation from Tripterygium wilfordii. In the present study, we demonstrated the effect of celastrol on HIF-1 activation. Celastrol showed a potent inhibitory activity against HIF-1 activation induced by hypoxia in various human cancer cell lines. This compound markedly decreased the hypoxia-induced accumulation of HIF-1α protein dose-dependently, whereas it did not affect the expressions of HIF-1β and topoisomerase-I (topo‑I). Furthermore, celastrol prevented hypoxia-induced expression of HIF-1 target genes for vascular endothelial growth factor (VEGF) and erythropoietin (EPO). Further analysis revealed that celastrol inhibited HIF-1α protein synthesis, without affecting the expression level of HIF-1α mRNA or degradation of HIF-1α protein. Markedly, we found that suppression of HIF-1α accumulation by celastrol correlated with strong dephosphorylation of mammalian target of rapamycin (mTOR) and its effectors, ribosomal protein S6 kinase (p70S6K) and eukaryotic initiation factor 4E (eIF4E) and extracellular signal-regulated kinase (ERK), pathways known to regulate HIF-1α expression at the translational level. In vivo studies further confirmed the inhibitory effect of celastrol on the expression of HIF-1α proteins, leading to a decreased growth of Hep3B cells in a xenograft tumor model. Our data suggested that celastrol is an effective inhibitor of HIF-1 and provide new perspectives into the mechanism of its anticancer activity.