Post-translational modifications of histones affect many biological processes by influencing higher order chromatin structure that affects gene and genome regulation. It is therefore important to develop methods for extracting histones while maintaining their native post-translational modifications. While histone extraction protocols have been developed in multicellular and single celled organisms such as yeast and Arabidopsis, they are inefficient in diatoms that have a silica cell wall that is likely to hinder histone extraction. We report in this work a rapid and reliable method for extraction of large amounts of high quality histones from the two model diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. The protocol is an important enabling step permitting downstream applications such as western blotting and mass spectrometry.
Keywords: Epigenetics; Mass spectrometry; Phaeodactylum tricornutum; Post-translational histone modifications; Thalassiosira pseudonana.
Copyright © 2013 Elsevier B.V. All rights reserved.