Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice

Neuropharmacology. 2014 Oct:85:314-27. doi: 10.1016/j.neuropharm.2014.05.012. Epub 2014 May 23.

Abstract

The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P1 and S1P3, but not S1P2, receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNFα-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNFα-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases.

Keywords: Endothelial cells; Fingolimod; Multiple sclerosis; Permeability; ST-1071; ST-968; Sphingosine 1-phosphate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CHO Cells
  • Cell Line
  • Cell Membrane Permeability / drug effects
  • Cells, Cultured
  • Chemotaxis / drug effects*
  • Cricetulus
  • Encephalomyelitis, Autoimmune, Experimental / drug therapy*
  • Encephalomyelitis, Autoimmune, Experimental / physiopathology
  • Endothelial Cells / drug effects*
  • Endothelial Cells / metabolism
  • Female
  • Fingolimod Hydrochloride
  • Humans
  • Immunosuppressive Agents / chemistry
  • Immunosuppressive Agents / pharmacology*
  • Lymphocytes / drug effects
  • Lymphocytes / physiology
  • Mice
  • Mice, Inbred C57BL
  • Oxazoles / chemistry
  • Oxazoles / pharmacology*
  • Propylene Glycols / chemistry
  • Propylene Glycols / pharmacology
  • Receptors, Lysosphingolipid / metabolism
  • Sphingosine / analogs & derivatives
  • Sphingosine / chemistry
  • Sphingosine / pharmacology
  • T-Lymphocytes / drug effects
  • T-Lymphocytes / physiology
  • U937 Cells

Substances

  • 7a-(4-(heptyloxy)phenethyl)tetrahydro-1H-oxazolo(3,4-c)oxazole
  • 7a-(4-octylphenethyl)tetrahydro-1H-oxazolo(3,4-c)oxazole
  • Immunosuppressive Agents
  • Oxazoles
  • Propylene Glycols
  • Receptors, Lysosphingolipid
  • Fingolimod Hydrochloride
  • Sphingosine