Nanomaterials are increasingly used in many fields, including drug vectors and vaccine formulation. In this study, nano-TiO(2) and magnetic Fe(3)O(4)@TiO(2) were synthesized and their abilities to activate dendritic cells were investigated. The signaling pathway involved in their effects on the cellular functions was also explored. First, nano-TiO(2) and Fe(3)O(4)@TiO(2) were prepared with diameters of 82nm and 63nm, and zeta potentials of 41.5mV and 30.2mV, respectively. The magnetic property of Fe(3)O(4)@TiO(2) was detected to be 12.9emu/g. Both kinds of nanoparticles were proved to have good biocompatibility in vitro. Second, the exposure of nano-TiO2 and Fe(3)O(4)@TiO(2)caused an increased expression of TNF-α, CD86 and CD80, and besides, Fe(3)O(4)@TiO(2)showed a certain up-regulation on MHC-II. The cellular uptake of Ovalbumin on BMDCs could be strongly improved by nano-TiO2 and Fe(3)O(4)@TiO(2)as detected via flow cytometer and confocal observation. Further investigation revealed that nano-TiO(2) and Fe(3)O(4)@TiO(2)significantly increased the NF-κB expression in the nucleus, indicating that the NF-κB signaling pathway was involved in the dendritic cell maturation. Our results suggested that nano-TiO(2) and Fe(3)O(4)@TiO(2)may function as a useful vector to promote vaccine delivery in immune cells, and Fe(3)O(4)@TiO(2)provided a possibility to deliver and track vaccines via its magnetofection.
Keywords: Dendritic cells; Fe(3)O(4)@TiO(2); Maturation; NF-κB; TiO(2).
Copyright © 2014 Elsevier B.V. All rights reserved.