Functional analysis and purification of a Pen-2 fusion protein for γ-secretase structural studies

J Neurochem. 2014 Oct;131(1):94-100. doi: 10.1111/jnc.12772. Epub 2014 Jun 18.

Abstract

The 19-transmembrane, multisubunit γ-secretase complex generates the amyloid β-peptide (Aβ) of Alzheimer's disease (AD) by an unusual intramembrane proteolysis of the β-amyloid precursor protein. The complex, which similarly processes many other type 1 transmembrane substrates, is composed of presenilin, Aph1, nicastrin, and presenilin enhancer (Pen-2), all of which are necessary for proper complex maturation and enzymatic activity. Obtaining a high-resolution atomic structure of the intact complex would greatly aid the rational design of compounds to modulate activity but is a very difficult task. A complementary method is to generate structures for each individual subunit to allow one to build a model of the entire complex. Here, we describe a method by which recombinant human Pen-2 can be purified from bacteria to > 95% purity at milligram quantities per liter, utilizing a maltose binding protein tag to both increase solubility and facilitate purification. Expressing the same construct in mammalian cells, we show that the large N-terminal maltose binding protein tag on Pen-2 still permits incorporation into the complex and subsequent presenilin-1 endoproteolysis, nicastrin glycosylation and proteolytic activity. These new methods provide valuable tools to study the structure and function of Pen-2 and the γ-secretase complex.

Keywords: Alzheimer's disease; Pen-2; γ-secretase.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amyloid Precursor Protein Secretases / chemistry*
  • Amyloid Precursor Protein Secretases / physiology*
  • Animals
  • Cell Line
  • Humans
  • Membrane Proteins / chemistry*
  • Membrane Proteins / physiology*
  • Mice
  • Mice, Knockout

Substances

  • Membrane Proteins
  • PSENEN protein, human
  • Amyloid Precursor Protein Secretases