Nature of spatiotemporal light bullets in bulk Kerr media

Phys Rev Lett. 2014 May 16;112(19):193901. doi: 10.1103/PhysRevLett.112.193901. Epub 2014 May 12.

Abstract

We present a detailed experimental investigation which uncovers the nature of light bullets generated from self-focusing in a bulk dielectric medium with Kerr nonlinearity in the anomalous group velocity dispersion regime. By high dynamic range measurements of three-dimensional intensity profiles, we demonstrate that the light bullets consist of a sharply localized high-intensity core, which carries the self-compressed pulse and contains approximately 25% of the total energy, and a ring-shaped spatiotemporal periphery. Subdiffractive propagation along with dispersive broadening of the light bullets in free space after they exit the nonlinear medium indicate a strong space-time coupling within the bullet. This finding is confirmed by measurements of a spatiotemporal energy density flux that exhibits the same features as a stationary, polychromatic Bessel beam, thus highlighting the nature of the light bullets.