A vectorial magneto-optic Kerr effect (v-MOKE) setup with simultaneous and quantitative determination of the two in-plane magnetization components is described. The setup provides both polarization rotations and reflectivity changes at the same time for a given sample orientation with respect to a variable external magnetic field, as well as allowing full angular studies. A classical description based on the Jones formalism is used to calculate the setup's properties. The use of different incoming light polarizations and/or MOKE geometries, as well as the errors due to misalignment and solutions are discussed. To illustrate the capabilities of the setup a detailed study of a model four-fold anisotropy system is presented. Among others, the setup allows to study the angular dependence of the hysteresis phenomena, remanences, critical fields, and magnetization reversal processes, as well as the accurate determination of the easy and hard magnetization directions, domain wall orientations, and magnetic anisotropies.