Human apolipoprotein E exhibits genetic polymorphism in all populations examined to date. By isoelectric focusing and immunoblotting, three common alleles have been demonstrated in 365 unrelated Nigerian blacks. Furthermore, the APO E genetic polymorphism's effect on quantitative levels of lipids and lipoproteins has been determined. The respective frequencies of the APO E*2, APO E*3, and APO E*4 alleles are .027, .677, and .296. The effect of APO E polymorphism is significant only on total cholesterol and low-density lipoprotein cholesterol. The average excesses of the APO E*2 allele are to lower total cholesterol and low-density lipoprotein cholesterol by 9.19 mg/dl and 11.11 mg/dl, respectively. The average excesses of the APO E*4 allele are to increase total cholesterol and low-density lipoprotein cholesterol by 5.64 mg/dl and 6.18 mg/dl, respectively. On the basis of the differences in (a) the distribution of APO E allele frequencies between the Nigerians and other populations and (b) dietary lipids, we propose a model that shows that lipid metabolism is influenced by the combined effects of the APO E polymorphism and environmental factors.