Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing

Circ Res. 2014 Aug 15;115(5):488-92. doi: 10.1161/CIRCRESAHA.115.304351. Epub 2014 Jun 10.

Abstract

Rationale: Individuals with naturally occurring loss-of-function proprotein convertase subtilisin/kexin type 9 (PCSK9) mutations experience reduced low-density lipoprotein cholesterol levels and protection against cardiovascular disease.

Objective: The goal of this study was to assess whether genome editing using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system can efficiently introduce loss-of-function mutations into the endogenous PCSK9 gene in vivo.

Methods and results: We used adenovirus to express CRISPR-associated 9 and a CRISPR guide RNA targeting Pcsk9 in mouse liver, where the gene is specifically expressed. We found that <3 to 4 days of administration of the virus, the mutagenesis rate of Pcsk9 in the liver was as high as >50%. This resulted in decreased plasma PCSK9 levels, increased hepatic low-density lipoprotein receptor levels, and decreased plasma cholesterol levels (by 35-40%). No off-target mutagenesis was detected in 10 selected sites.

Conclusions: Genome editing with the CRISPR-CRISPR-associated 9 system disrupts the Pcsk9 gene in vivo with high efficiency and reduces blood cholesterol levels in mice. This approach may have therapeutic potential for the prevention of cardiovascular disease in humans.

Keywords: coronary disease; genetic therapy; lipoproteins; molecular biology; prevention and control.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • 3T3-L1 Cells
  • Adenoviridae / genetics
  • Animals
  • Biomarkers / blood
  • Cardiovascular Diseases / enzymology
  • Cardiovascular Diseases / genetics
  • Cardiovascular Diseases / prevention & control
  • Cholesterol / blood
  • Clustered Regularly Interspaced Short Palindromic Repeats*
  • Female
  • Gene Expression Regulation, Enzymologic
  • Genetic Vectors
  • Genotype
  • Liver / enzymology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mutation*
  • Phenotype
  • Proprotein Convertase 9
  • Proprotein Convertases / blood
  • Proprotein Convertases / genetics*
  • Protective Factors
  • RNA Editing*
  • RNA, Guide, CRISPR-Cas Systems / genetics*
  • RNA, Guide, CRISPR-Cas Systems / metabolism
  • Receptors, LDL / metabolism
  • Serine Endopeptidases / blood
  • Serine Endopeptidases / genetics*
  • Time Factors
  • Transfection

Substances

  • Biomarkers
  • RNA, Guide, CRISPR-Cas Systems
  • Receptors, LDL
  • Cholesterol
  • Pcsk9 protein, mouse
  • Proprotein Convertase 9
  • Proprotein Convertases
  • Serine Endopeptidases