Background: Hematopoietic growth factors have been suggested to induce neuroprotective and regenerative effects in various animal models of cerebral injury. However, the pathways involved remain widely unexplored.
Aims: This study aimed to investigate effects of local and systemic administration of granulocyte colony-stimulating factor on brain damage, functional recovery, and cerebral neurogenesis in an intracerebral haemorrhage whole blood injection model in rats.
Methods: Eight-week-old male Wistar rats (n = 100) underwent induction of striatal intracerebral haemorrhage by autologous whole blood injection or sham procedure and were randomly assigned to either (a) systemic treatment with granulocyte colony-stimulating factor (60 μg/kg) for five-days; (b) single intracerebral injection of granulocyte colony-stimulating factor (60 μg/kg) into the cavity; or (c) application of vehicle for five-days. Bromodeoxyuridine-labelling and immunohistochemistry were used to analyze proliferation and survival of newly born cells in the sub-ventricular zone and the hippocampal dentate gyrus. Moreover, functional deficits and lesion volume were assessed until day 42 after intracerebral haemorrhage.
Results: Differences in lesion size or hemispheric atrophy between granulocyte colony-stimulating factor-treated and control groups did not reach statistical significance. Neither systemic, nor local granulocyte colony-stimulating factor administration induced neurogenesis within the dentate gyrus or the sub-ventricular zone. The survival of newborn cells in these regions was prevented by intracerebral granulocyte colony-stimulating factor application. A subtle benefit in functional recovery at day 14 after intracerebral haemorrhage induction was observed after granulocyte colony-stimulating factor treatment.
Conclusion: There was a lack of neuroprotective or neuroregenerative effects of granulocyte colony-stimulating factor in the present rodent model of intracerebral haemorrhage. Conflicting results from functional outcome assessment require further research.
Keywords: acute stroke therapy; brain bleed; cerebral haemorrhage; neuroprotection; stem cells; stroke.
© 2013 The Authors. International Journal of Stroke © 2013 World Stroke Organization.