Platelet activation and thrombus formation play a critical role in primary hemostasis but also represent a pathophysiological mechanism leading to acute thrombotic vascular occlusions. Besides, platelets modulate cellular processes including inflammation, angiogenesis and neurodegeneration. On the other hand, platelet activation and thrombus formation are altered in different diseases leading to either bleeding complications or pathological thrombus formation. For many years platelets have been considered to play a role in neuroinflammatory diseases such as Alzheimer's disease (AD). AD is characterized by deposits of amyloid-β (Aβ) and strongly related to vascular diseases with platelets playing a critical role in the progression of AD because exposure of platelets to Aβ induces platelet activation, platelet Aβ release, and enhanced platelet adhesion to collagen in vitro and at the injured carotid artery in vivo. However, the molecular mechanisms and the relation between vascular pathology and amyloid-β plaque formation in the pathogenesis of AD are not fully understood. Compelling evidence is suggestive for altered platelet activity in AD patients. Thus we analyzed platelet activation and thrombus formation in aged AD transgenic mice (APP23) known to develop amyloid-β deposits in the brain parenchyma and cerebral vessels. As a result, platelets are in a pre-activated state in blood of APP23 mice and showed strongly enhanced integrin activation, degranulation and spreading kinetics on fibrinogen surfaces upon stimulation. This enhanced platelet signaling translated into almost unlimited thrombus formation on collagen under flow conditions in vitro and accelerated vessel occlusion in vivo suggesting that these mice are at high risk of arterial thrombosis leading to cerebrovascular and unexpectedly to cardiovascular complications that might be also relevant in AD patients.
Keywords: Alzheimer's disease; Arterial thrombosis; Cerebral amyloid angiopathy; Hemostasis; Platelets.
Copyright © 2014 Elsevier Inc. All rights reserved.