The photochemical isomerization of the trans-trans-cis to the trans-trans-trans isomer of the merocyanine form of 6-nitro BIPS, which has been studied with femtosecond transient absorption spectroscopy [S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, J. Chem. Phys. 140, 224310 (2014)], is investigated using time-dependent density functional theory in conjunction with polarizable continuum models. Benchmark calculations against SCS-ADC(2) evaluate the applicability of the CAM-B3LYP functional. Apart from a relaxed scan in the ground state with additional computation of the corresponding excitation energies, which produces the excited-state surface vertical to the ground-state isomerization coordinate, a relaxed scan in the S1 gives insight into the geometric changes orthogonal to the reaction coordinate and the fluorescence conditions. The shape of the potential energy surface (PES) along the reaction coordinate is found to be highly sensitive to solvation effects, with the method of solvation (linear response vs. state-specific) being critical. The shape of the PES as well as the computed harmonic frequencies in the S1 minima are in line with the experimental results and offer a straightforward interpretation.