CuGeO₃ nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance

Nanoscale. 2014 Jul 21;6(14):8350-8. doi: 10.1039/c4nr00921e.

Abstract

A facile one-step route was developed to synthesize crystalline CuGeO₃ nanowire/graphene composites (CGCs). Crystalline CuGeO₃ nanowires were tightly covered and anchored by graphene sheets, forming a layered structure. Subsequently, CGCs were exploited as electrode materials for lithium ion batteries (LIBs). The reversible formation of Li₂O buffer layer and elastic graphene sheets accommodated the volume change during the charge and discharge processes. CGC containing 37 wt% graphene exhibited a superior electrochemical performance, that is, a remarkable reversible capacity (1265 mA h g(-1) for the first cycle), an outstanding cyclic performance (853 mA h g(-1) after 50 cycles under a current density of 200 mA g(-1)), a high coulombic efficiency, and an excellent rate capability. Clearly, CGCs may stand out as a promising anode material for LIBs.

Publication types

  • Research Support, Non-U.S. Gov't