Only a subset of radically-resected pancreatic ductal adenocarcinoma (PDAC) patients benefit from gemcitabine-based chemotherapy, thus the identification of novel prognostic factors is essential. In a high-throughput, microRNA (miRNA) array, miR-211 emerged as the best discriminating miRNA, with high expression associated with long survival. Here, we further explored the biological role of miRNA-211 in gemcitabine activity in the human PDAC cells (SUIT-2) subclones SUIT2-007 and SUIT2-028. Our results showed that miR-211 was expressed differentially in PDAC cells characterized by differential metastatic capability. In particular, S2-028 with lower metastatic ability had a higher expression of miR-211, compared to the S2-007 with higher metastatic capacity. Enforced expression of miR-211 via pre-miR-211 significantly reduced cell migration and invasion (e.g., 40% reduction of invasion of SUIT2 cells, compared to control; p<.05). Moreover, we demonstrated that induction of the miR-211 expression in the cells increased the sensitivity to gemcitabine and reduced the expression of its target ribonucleotide reductase subunit 2 (RRM2). In conclusion, miR-211 functional analyses suggested the role of RRM2 as a target of miR-211 in the modulation of gemcitabine sensitivity. Moreover, inhibition of cell migration and invasion might explain the less aggressive behavior of pancreatic cancer cells with higher expression levels of miR-211.
Keywords: Pancreatic ductal adenocarcinoma (PDAC); RRM2; gemcitabine; invasive behavior; miR-211.