Tuning of photocatalytic activity by creating a tridentate coordination sphere for palladium

Dalton Trans. 2014 Aug 14;43(30):11676-86. doi: 10.1039/c4dt01034e. Epub 2014 Jun 20.

Abstract

The synthesis and characterisation of an asymmetric potential bridging ligand bmptpphz (bmptpphz = 2,17-bis(4-methoxyphenyl)tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j] phenazine) is presented. This ligand contains a 1,10-phenanthroline (phen) and a 2,9-disubstituted phen sphere and possesses a strong absorbance in the visible. Facile coordination of the phen sphere to a Ru(tbbpy)2 core leads to Ru(bmptpphz) ([(tbbpy)2Ru(bmptpphz)](PF6)2; tbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine). UV-vis, emission, resonance Raman and theoretical investigations show that this complex possesses all properties associated with a Ru(tpphz) ([(tbbpy)2Ru(tpphz)](PF6)2; tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j] phenazine) moiety and that the ligand based absorbances in the vis-part also populate an MLCT like state. The coordination of a Pd-core in the new 2,9-disubstituted phen sphere is possible, leading to a cyclometallation. The tridentate complexation leads to changes in the UV-vis and emission behaviour. Furthermore, the stability of the Pd-coordination is significantly enhanced if compared to the unsubstituted Ru(tpphz). Ru(bmptpphz)PdCl proved to be an active photocatalyst for H2 evolution, albeit with lower activity than the mother compound Ru(tpphz)PdCl2.