Overcoming platinum drug resistance represents a major clinical challenge in cancer treatment. We discovered a novel drug combination using cisplatin and a class of thioquinazolinone derivatives including mdivi-1 (mitochondrial division inhibitor-1), that induces synergistic apoptosis in platinum resistant tumor cells, including those from cisplatin-refractory endstage ovarian cancer patients. However, through study of the combination effect on Drp1 (the reported target of mdivi-1) knockout MEF cells and the functional analysis of mdivi-1 analogs, we revealed that the synergism between mdivi-1 and cisplatin is Drp1-independent. Mdivi-1 impairs DNA replication and its combination with cisplatin induces a synergistic increase of replication stress and DNA damage, causing a preferential upregulation of a BH3-only protein Noxa. Mdivi-1 also represses mitochondrial respiration independent of Drp1, and the combination of mdivi-1 and cisplatin triggers substantial mitochondrial uncoupling and swelling. Upregulation of Noxa and simultaneous mitochondrial swelling causes synergistic induction of mitochondrial outer membrane permeabilization (MOMP), proceeding robust mitochondrial apoptotic signaling independent of Bax/Bak. Thus, the novel mode of MOMP induction by the combination through the "dual-targeting" potential of mdivi-1 on DNA replication and mitochondrial respiration suggests a novel class of compounds for platinum-based combination option in the treatment of platinum as well as multidrug resistant tumors.