In this study, we identified antifolates with potent, targeted activity against whole-cell Mycobacterium tuberculosis (MTB). Liquid chromatography-mass spectrometry analysis of antifolate-treated cultures revealed metabolic disruption, including decreased pools of methionine and S-adenosylmethionine. Transcriptomic analysis highlighted altered regulation of genes involved in the biosynthesis and utilization of these two compounds. Supplementation with amino acids or S-adenosylmethionine was sufficient to rescue cultures from antifolate treatment. Instead of the "thymineless death" that characterizes folate pathway inhibition in a wide variety of organisms, these data suggest that MTB is vulnerable to a critical disruption of the reactions centered around S-adenosylmethionione, the activated methyl cycle.
Copyright © 2014 Elsevier Ltd. All rights reserved.