Aim: The objective of the study was to develop regenerative therapy by transplanting varied populations of dopaminergic neurons, differentiated from mouse embryonic stem cells (mES) in the striatum for correcting experimental parkinsonism in rats.
Methods: mES differentiated by default for 7 days in serum-free media (7D), or by enhanced differentiation of 7D in retinoic acid (7R), or dopaminergic neurons enriched by manual magnetic sorting from 7D (SSEA-) were characterized and transplanted in the ipsilateral striatum of 6-hydroxydopamine-induced hemiparkinsonian rats. Neurochemical, neuronal, glial and neurobehavioral recoveries were examined.
Results: 7R and SSEA- contained significantly reduced NANOG and high MAP2 mRNA and protein levels as revealed, respectively, by reverse transcriptase-PCR and immunocytochemistry, compared with 7D. Striatal engraftment of 7D resulted in a significantly better behavioral and neurochemical recovery, as compared to the animals that received either 7R or SSEA-. The 7R transplanted animals showed improvement neither in behavior nor in striatal dopamine level. The grafted striatum revealed increased GFAP staining intensity in 7D and SSEA-, but not in 7R cells transplanted group, suggesting a vital role played by glial cells in the recovery. Substantia nigra ipsilateral to the side of the striatum, which received transplants showed more tyrosine hydroxylase immunostained neurons, as compared to 6-hydroxydopamine-infused animals.
Conclusion: These results demonstrate that default differentiated mixed population of cells are better than sorted, enriched dopaminergic cells, or cells containing more mature neurons for transplantation recovery in hemiparkinsonian rats.
Keywords: 6-OHDA-induced hemiparkinsonism; Default differentiation; Embryonic stem cells; Intrastriatal transplantation; Manual magnetic cell sorting; Nigral neuronal loss; Retinoic acid.
© 2014 John Wiley & Sons Ltd.