Functional recovery with recombinant human IGF1 treatment in a mouse model of Rett Syndrome

Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9941-6. doi: 10.1073/pnas.1311685111. Epub 2014 Jun 23.

Abstract

Rett Syndrome is a neurodevelopmental disorder that arises from mutations in the X-linked gene methyl-CpG binding protein 2 (MeCP2). MeCP2 has a large number of targets and a wide range of functions, suggesting the hypothesis that functional signaling mechanisms upstream of synaptic and circuit maturation may contribute to our understanding of the disorder and provide insight into potential treatment. Here, we show that insulin-like growth factor-1 (IGF1) levels are reduced in young male Mecp2-null (Mecp2(-/y)) mice, and systemic treatment with recombinant human IGF1 (rhIGF1) improves lifespan, locomotor activity, heart rate, respiration patterns, and social and anxiety behavior. Furthermore, Mecp2-null mice treated with rhIGF1 show increased synaptic and activated signaling pathway proteins, enhanced cortical excitatory synaptic transmission, and restored dendritic spine densities. IGF1 levels are also reduced in older, fully symptomatic heterozygous (Mecp2(-/+)) female mice, and short-term treatment with rhIGF1 in these animals improves respiratory patterns, reduces anxiety levels, and increases exploratory behavior. In addition, rhIGF1 treatment normalizes abnormally prolonged plasticity in visual cortex circuits of adult Mecp2(-/+) female mice. Our results provide characterization of the phenotypic development of Rett Syndrome in a mouse model at the molecular, circuit, and organismal levels and demonstrate a mechanism-based therapeutic role for rhIGF1 in treating Rett Syndrome.

Keywords: female mice; male mice; molecular therapeutic; respiration; synaptic function.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Behavior, Animal
  • Disease Models, Animal*
  • Female
  • Humans
  • Insulin-Like Growth Factor I / pharmacology
  • Insulin-Like Growth Factor I / therapeutic use*
  • Male
  • Methyl-CpG-Binding Protein 2 / genetics
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Recombinant Proteins / pharmacology
  • Recombinant Proteins / therapeutic use
  • Respiration
  • Rett Syndrome / drug therapy*
  • Rett Syndrome / genetics
  • Signal Transduction
  • Visual Cortex / drug effects
  • Visual Cortex / physiopathology

Substances

  • Mecp2 protein, mouse
  • Methyl-CpG-Binding Protein 2
  • Recombinant Proteins
  • Insulin-Like Growth Factor I