Three-dimensional (3-D) tissue engineered constructs provide a platform for examining how the local extracellular matrix contributes to the malignancy of various cancers, including human glioblastoma multiforme. Here, we describe a simple and innovative 3-D culture environment and assess its potential for use with glioblastoma stem cells (GSCs) to examine the diversification inside the cell mass in the 3-D culture system. The dissociated human GSCs were cultured using gelatin foam. These cells were subsequently identified by immunohistochemical staining, reverse transcriptase-polymerase chain reaction, and Western blot assay. We demonstrate that the gelatin foam provides a suitable microenvironment, as a 3-D culture system, for GSCs to maintain their stemness. The gelatin foam culture system contributes a simplified assessment of cell blocks for immunohistochemistry assay. We show that the significant transcription activity of hypoxia and the protein expression of inflammatory responses are detected at the inside of the cell mass in vitro, while robust expression of PROM1/CD133 and hypoxia-induced factor-1 alpha are detected at the xenografted tumor in vivo. We also examine the common clinical trials under this culture platform and characterized a significant difference of drug resistance. The 3-D gelatin foam culture system can provide a more realistic microenvironment through which to study the in vivo behavior of GSCs to evaluate the role that biophysical factors play in the hypoxia, inflammatory responses and subsequent drug resistance.
Keywords: 3-D culture system; drug resistance; gelatin foam; glioblastoma stem cell; stemness.
© 2014 Wiley Periodicals, Inc.