COSMOS: Python library for massively parallel workflows

Bioinformatics. 2014 Oct 15;30(20):2956-8. doi: 10.1093/bioinformatics/btu385. Epub 2014 Jun 30.

Abstract

Summary: Efficient workflows to shepherd clinically generated genomic data through the multiple stages of a next-generation sequencing pipeline are of critical importance in translational biomedical science. Here we present COSMOS, a Python library for workflow management that allows formal description of pipelines and partitioning of jobs. In addition, it includes a user interface for tracking the progress of jobs, abstraction of the queuing system and fine-grained control over the workflow. Workflows can be created on traditional computing clusters as well as cloud-based services.

Availability and implementation: Source code is available for academic non-commercial research purposes. Links to code and documentation are provided at http://lpm.hms.harvard.edu and http://wall-lab.stanford.edu.

Contact: [email protected] or [email protected].

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Genomics / methods*
  • High-Throughput Nucleotide Sequencing / methods*
  • Programming Languages*