A spatial correlation between chemical and topological defects in the tetrahedron network in vitreous silica produced by a fusion process of natural quartz crystals was found by synchrotron-based UV resonance Raman experiments. Furthermore, a quantitative correlation between these defects was obtained by comparing visible Raman and UV absorption spectra. These results indicate that in vitreous silica produced by the fusion process the topological defects disturb the surrounding tetrahedral silica network and induce further disorder regions with sub nanometric sizes.