To avoid winter frost damage, evergreen coniferous species develop cold hardiness with suitable phenology for the local climate regime. Along the elevational gradient, a genetic cline in autumn phenology is often recognised among coniferous populations, but further quantification of evolutionary adaptation related to the local environment and its responsible signals generating the phenological variation are poorly understood. We evaluated the timing of cold hardening among populations of Abies sachalinensis, based on time series freezing tests using trees derived from four seed source populations × three planting sites. Furthermore, we constructed a model to estimate the development of hardening from field temperatures and the intraspecific variations occurring during this process. An elevational cline was detected such that high-elevation populations developed cold hardiness earlier than low-elevation populations, representing significant genetic control. Because development occurred earlier at high-elevation planting sites, the genetic trend across elevation overlapped with the environmental trend. Based on the trade-off between later hardening to lengthen the active growth period and earlier hardening to avoid frost damage, this genetic cline would be adaptive to the local climate. Our modelling approach estimated intraspecific variation in two model components: the threshold temperature, which was the criterion for determining whether the trees accumulated the thermal value, and the chilling requirement for trees to achieve adequate cold hardiness. A higher threshold temperature and a lower chilling requirement could be responsible for the earlier phenology of the high-elevation population. These thermal responses may be one of the important factors driving the elevation-dependent adaptation of A. sachalinensis.
Keywords: Abies sachalinensis; adaptation; cold acclimation; cold hardening; intraspecific variation; modelling; phenology.
© 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.