Optimal timing of pulmonary valve replacement (PVR) for pulmonary regurgitation is a debated topic. It is logical that maximal aerobic capacity (VO2peak) would decline when a PVR is needed, but a diminished VO2peak is not always present before PVR, and previous studies show no improvement in VO2peak after PVR. This study aimed to evaluate changes in resting spirometry from pre- to post-PVR sternotomy, to determine the limiting factors of VO2peak before and after PVR, and to determine whether changes in resting lung function after PVR may explain the lack of improvement in VO2peak after surgery. For 26 patients (age, 19.7 ± 7.8 years) with a history of right ventricular outflow tract revision, the study prospectively evaluated echocardiograms, resting spirometry, and maximal exercise tests before PVR and then an average of 15 months after PVR. Flow volume loops were reviewed by a pulmonologist and categorized as obstructive, restrictive, both obstructive and restrictive, or normal. Exercise tests were interpreted using Eschenbacher's algorithm to determine the primary factors limiting exercise. No change in VO2peak or spirometry after PVR was observed. Before PVR, many patients had abnormal resting lung functions (85 % abnormal), which was unchanged after PVR (86 5 % abnormal). The majority of the patients had a ventilatory limitation to VO2peak before PVR (66.7 %), whereas 28.5 % had a cardiovascular limitation, and 4.8 % had no clear limitation. After PVR, 65.2 % of the patients had a ventilatory limitation, whereas 30.4 % had a cardiovascular limitation, and 4.4 % had no clear limitation to VO2peak. Pulmonary function did not change up to 15 months after surgical PVR. The frequency of pulmonary limitation to VO2peak after PVR did not increase. The effect of pulmonary function on exercise-related symptoms must be considered in this patient population. Improved cardiac hemodynamics are unlikely to improve VO2peak in a primarily pulmonary-limited patient.