Background: Hepatocellular carcinoma (HCC), the primary liver cancer, is one of the most malignant human tumors with extremely poor prognosis. The aim of this study was to investigate the anti-cancer effect of berberine in a human hepatocellular carcinoma cell line (HepG2), and to study the underlying mechanisms by focusing on the AMP-activated protein kinase (AMPK) signaling cascade.
Results: We found that berberine induced both apoptotic and autophagic death of HepG2 cells, which was associated with a significant activation of AMPK and an increased expression of the inactive form of acetyl-CoA carboxylase (ACC). Inhibition of AMPK by RNA interference (RNAi) or by its inhibitor compound C suppressed berberine-induced caspase-3 cleavage, apoptosis and autophagy in HepG2 cells, while AICAR, the AMPK activator, possessed strong cytotoxic effects. In HepG2 cells, mammalian target of rapamycin complex 1 (mTORC1) activation was important for cell survival, and berberine inhibited mTORC1 via AMPK activation.
Conclusions: Together, these results suggested that berberine-induced both apoptotic and autophagic death requires AMPK activation in HepG2 cells.
Keywords: AMPK; Apoptosis; Autophagy and mTOR; Berberine; Hepatocellular carcinoma.