Methylprednisolone inhibits the proliferation and affects the differentiation of rat spinal cord-derived neural progenitor cells cultured in low oxygen conditions by inhibiting HIF-1α and Hes1 in vitro

Int J Mol Med. 2014 Sep;34(3):788-95. doi: 10.3892/ijmm.2014.1835. Epub 2014 Jul 3.

Abstract

Although there is much controversy over the use of methylprednisolone (MP), it is one of the main drugs used in the treatment of acute spinal cord injury (SCI). The induction of the proliferation and differentiation of endogenous neural progenitor cells (NPCs) is considered a promising mode of treatment for SCI. However, the effects of MP on spinal cord-derived endogenous NPCs in a low oxygen enviroment remain to be delineated. Thus, the aim of this study was to investigate the potential effects of MP on NPCs cultured under low oxygen conditions in vitro and to elucidate the molecular mechanisms involved. Fetal rat spinal cord-derived NPCs were harvested and divided into 4 groups: 2 groups of cells cultured under normal oxygen conditions and treated with or without MP, and 2 groups incubated in 3% O2 (low oxygen) treated in a similar manner. We found that MP induced suppressive effects on NPC proliferation even under low oxygen conditions (3% O2). The proportion of nestin-positive NPCs decreased from 51.8±2.46% to 36.17±3.55% following the addition of MP and decreased more significantly to 27.20±2.68% in the cells cultured in 3% O2. In addition, a smaller number of glial fibrillary acidic protein (GFAP)-positive cells and a greater number of microtubule-associated protein 2 (MAP2)-positive cells was observed following the addition of MP under both normal (normoxic) and low oxygen (hypoxic) conditions. In response to MP treatment, hypoxia-inducible factor-1α (HIF-1α) and the Notch signaling pathway downstream protein, Hes1, but not the upstream Notch-1 intracelluar domain (NICD), were inhibited. After blocking NICD with a γ-secretase inhibitor (DAPT) MP still inhibited the expression of Hes1. Our results provide insight into the molecular mechanisms responsible for the MP-induced inhibition of proliferation and its effects on differentiation and suggest that HIF-1α and Hes1 play an important role in this effect.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Basic Helix-Loop-Helix Transcription Factors / metabolism*
  • Blotting, Western
  • Cell Count
  • Cell Differentiation / drug effects*
  • Cell Differentiation / genetics
  • Cell Hypoxia
  • Cell Proliferation / drug effects
  • Cells, Cultured
  • Flow Cytometry
  • Gene Expression Regulation / drug effects
  • Homeodomain Proteins / metabolism*
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism*
  • Immunohistochemistry
  • Methylprednisolone / pharmacology*
  • Nestin / metabolism
  • Neural Stem Cells / cytology*
  • Neural Stem Cells / drug effects
  • Neural Stem Cells / metabolism
  • Neurons / cytology
  • Neurons / drug effects
  • Neurons / metabolism
  • Oxygen / pharmacology*
  • Phosphoglycerate Kinase / metabolism
  • Rats, Sprague-Dawley
  • Receptors, Notch / metabolism
  • Signal Transduction / drug effects
  • Spinal Cord / cytology*
  • Transcription Factor HES-1
  • Vascular Endothelial Growth Factor A / genetics
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • Basic Helix-Loop-Helix Transcription Factors
  • Hes1 protein, rat
  • Homeodomain Proteins
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Nestin
  • Receptors, Notch
  • Transcription Factor HES-1
  • Vascular Endothelial Growth Factor A
  • Phosphoglycerate Kinase
  • Oxygen
  • Methylprednisolone