In vitro treatment of human peripheral blood neutrophils from smokers and non-smokers with an aqueous cigarette smoke (CS) extract resulted in a concentration-dependent increase in surface expression of CD11b and CD66b and a corresponding decrease of CD62L, together with a concentration-dependent release of MMP-8, MMP-9, and lactoferrin, indicating considerable activation and degranulation. However, the burst response to N-formyl-methionyl-leucyl-phenylalanine (fMLP) was unchanged in CS-stimulated neutrophils from both smokers and non-smokers. When supernatants from CS-treated monocytic MonoMac-6 (MM6) cells were used for activation of neutrophils, concentration-dependent changes in surface marker expression, granule protein release, and the oxidative burst response to fMLP were observed, again with no major differences between smokers and non-smokers. CS-treated MM6 cells released significant amounts of IL-8 and TNF-α into the culture supernatant. However, antibody blocking experiments showed that only TNF-α mediated the increased burst response in neutrophils. These data show that, in the presence of secondary cells, CS is able to prime neutrophils for an increased burst response to fMLP which is mediated by TNF-α, released from the secondary cells in response to CS. Following stimulation with priming agents, peripheral blood neutrophils from healthy smokers show an equal burst response compared to those from non-smokers.
Keywords: COPD; Monocytes; Polymorphonuclear leukocytes; Respiratory burst; Smoke-bubbled phosphate-buffered saline.
Copyright © 2014 Elsevier Ltd. All rights reserved.