Historically, prairie dogs (Cynomys spp.) have been considered essential keystone species of western United States grassland ecosystems because they provide unique services and increase vegetation community richness, evenness, and diversity. However, the effects of black-tailed prairie dogs (Cynomys ludovicianus) on lands adjacent to or surrounded by urban areas may not result in the same ecosystem benefits historically associated with their presence. An urban landscape presents prairie dogs with movement challenges unparalleled in natural landscapes, as well as suites of nonnative plant species that are more common in disturbed areas. This study examined a complex ecosystem where vegetation communities are being influenced by directional environmental change, and quantified the synergistic effects resulting from the protective management of a native keystone species. The data set for this analysis was comprised of 71 paired (occupied by prairie dogs vs. unoccupied) vegetation surveys and 156 additional unpaired surveys collected from around the city of Boulder, Colorado, USA for 14 yr. Linear mixed models were used to compare data from transects occupied and unoccupied by prairie dogs, as well as to evaluate the effect of prairie dog occupation duration. In the absence of prairie dogs, vegetation in this region exhibited declines in native grasses, no changes in introduced grasses, and increases in native and nonnative forbs and bare soil over the study interval. In the presence of prairie dogs, these observed directional changes were nearly all amplified at rates four to 10 times greater than when prairie dogs were absent. Areas in Boulder occupied by prairie dogs also had significantly lower richness, evenness, and diversity of plant species, compared to unoccupied areas. Analysis of plant functional groups revealed the significant reduction of perennial native grasses, as well as a significantly higher cover of introduced forbs in occupied areas. Prairie dogs amplified the effects of low-impact environmental directional changes, creating more novel vegetation communities than the environmental factors alone. Results from this research provide insight regarding the synergistic effects of a native keystone species within a complex human-impacted 21st century landscape.