Preparation, structural characterization, and ion-exchange properties of two new zeolite-like 3D frameworks constructed by ε-Keggin-type polyoxometalates with binding metal ions, H11.4[ZnMo12O40Zn2]1.5- and H7.5[Mn0.2Mo12O40Mn2]2.1-

Inorg Chem. 2014 Jul 21;53(14):7309-18. doi: 10.1021/ic500630h. Epub 2014 Jul 9.

Abstract

Two new ε-Keggin-type polyoxometalate-based 3D frameworks, Na1.5H11.4[ε-Zn(II)Mo(V)10.9Mo(VI)1.1O40{Zn(II)}2] and (NH4)2.1H7.5[ε-Mn(II)0.2Mo(V)6Mo(VI)6O40{Mn(II)}2], are prepared, and their structures are determined by powder X-ray diffraction, Fourier transform infrared, Raman spectroscopy, and elemental analysis. ε-Keggin-type polyoxomolybdate units, [ε-ZnMo12O40] and [ε-Mn0.2Mo12O40], are linked with Zn(2+) and Mn(2+), respectively, in a tetrahedral fashion to form 3D frameworks. They show zeolite-like ion-exchange properties and redox properties. The ε-Keggin-based 3D framework shows high chemical composition diversity and can incorporate different elements in the framework.