There have been numerous efforts to improve the performance of graphene-based electronic devices by chemical doping. Most studies have focused on gas-phase doping with chemical vapor deposition. However, that requires a complicated transfer process that causes undesired doping and defects by residual polymers. Here, we report a solid-phase synthesis of doped graphene by means of silicon carbide (SiC) substrate including a dopant source driven by pulsed laser irradiation. This method provides in situ direct growth of doped graphene on an insulating SiC substrate without a transfer step. A numerical simulation on the temperature history of the SiC surface during laser irradiation reveals that the surface temperature of SiC can be accurately controlled to grow nitrogen-doped graphene from the thermal decomposition of nitrogen-doped SiC. Laser-induced solid-phase doped graphene is highly promising for the realization of graphene-based nanoelectronics with desired functionalities.