Lithium-ion diffusion mechanisms in the battery anode material Li(1+x)V(1-x)O₂

Phys Chem Chem Phys. 2014 Oct 21;16(39):21114-8. doi: 10.1039/c4cp01640h. Epub 2014 Jul 10.

Abstract

Layered Li(1+x)V(1-x)O2 has attracted recent interest as a potential low voltage and high energy density anode material for lithium-ion batteries. A greater understanding of the lithium-ion transport mechanisms is important in optimising such oxide anodes. Here, stoichiometric LiVO2 and Li-rich Li1.07V0.93O2 are investigated using atomistic modelling techniques. Lithium-ion migration is not found in LiVO2, which has also previously shown to be resistant to lithium intercalation. Molecular dynamics simulations of lithiated non-stoichiometric Li(1.07+y)V0.93O2 suggest cooperative interstitial Li(+) diffusion with favourable migration barriers and diffusion coefficients (D(Li)), which are facilitated by the presence of lithium in the transition metal layers; such transport behaviour is important for high rate performance as a battery anode.