Background and purpose: Because recanalization of coiled cerebral aneurysms is reported to occur, follow-up imaging is mandatory, ideally noninvasively. Our study aimed to evaluate the accuracy of an optimized angiographic CT by using intravenous contrast material injection in the assessment of coiled cerebral aneurysms, compared with MR angiography and digital subtraction angiography, the criterion standard.
Materials and methods: We included 69 patients with 76 coiled cerebral aneurysms. In each patient, we performed an angiographic CT with intravenous contrast material injection with a dual rotational acquisition, a time-of-flight MR angiography, and a DSA. The angiographic CT with intravenous contrast material injection data was postprocessed by using newly implemented reconstructions modes and a dual-volume technique. An aneurysm occlusion rate was assessed in angiographic CT with intravenous contrast material injection and MRA; remnants were measured and correlated with DSA, respectively.
Results: Twenty-eight remnants were revealed by DSA with a mean size of 3.1 × 3.1 mm. Angiographic CT with intravenous contrast material injection demonstrated a sensitivity of 93% and a specificity of 96% in remnant detection. MRA showed almost identical accuracy (sensitivity of 93%, specificity of 100%). Assessment of remnant size by angiographic CT with intravenous contrast material injection and by MRA revealed a high significant correlation with DSA, respectively (P < .001).
Conclusions: Optimized angiographic CT with intravenous contrast material injection and MRA demonstrated accuracy comparable with that of DSA in the follow-up of coiled aneurysms, respectively. The assessment of remnant size showed a high correlation with DSA for both techniques. Due to the lack of radiation exposure, MRA seems to be the preferred technique. However, angiographic CT with intravenous contrast material injection can be considered a reliable, noninvasive alternative in patients with MR imaging contraindications or in cases of compromising artifacts due to metal implants (ie, clips).
© 2014 by American Journal of Neuroradiology.