Background: Sequential allergen desensitization provides temporary tolerance for allergic patients. We adapted a clinical protocol to desensitize human blood basophils ex vivo and investigated the mechanism and allergen specificity.
Methods: We included 28 adult, grass allergic subjects. The optimal, activating allergen concentration was determined by measuring activated CD63(+) CD193(+) SS(Low) basophils in a basophil activation test with 8 log-dilutions of grass allergen. Basophils in whole blood were desensitized by incubation with twofold to 2.5-fold increasing allergen doses in 10 steps starting at 1 : 1000 of the optimal dose. Involvement of p38 mitogen-activated protein kinase (MAPK) was assessed after 3 min of allergen stimulation (n = 7). Allergen specificity was investigated by desensitizing cells from multi-allergic subjects with grass allergen and challenging with optimal doses of grass, birch, recombinant house dust mite (rDer p2) allergen or anti-IgE (n = 10).
Results: Desensitization reduced the fraction of blood basophils responding to challenge with an optimal allergen dose from a median (IQR) 81.0% (66.3-88.8) to 35.4% (19.8-47.1, P < 0.0001). CD63 MFI expression was reduced from 68 248 (29 336-92 001) to 30 496 (14 046-46 179, P < 0.0001). Basophils from multi-allergic subjects were desensitized with grass allergen. Challenge with grass allergen resulted in 39.6% activation (15.8-58.3). An unrelated challenge (birch, rDer p2 or anti-IgE) resulted in 53.4% activation (30.8-66.8, P = 0.16 compared with grass). Desensitization reduced p38 MAPK phosphorylation from a median 48.1% (15.6-92.8) to 26.1% (7.4-71.2, P = 0.047) and correlated with decrease in CD63 upregulation (n = 7, r > 0.79, P < 0.05).
Conclusion: Desensitization attenuated basophil response rapidly and non-specifically at a stage before p38 MAPK phosphorylation.
Keywords: allergen desensitization; basophil activation test; basophil granulocytes; basophil sensitivity; p38 MAPK.
© 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.