A safe and effective therapy for epilepsy requires a drug delivery system that can penetrate the blood-brain barrier and subsequently release antiepileptic drugs rapidly to suppress neuronal discharges in a timely manner. We have developed electro-responsive hydrogel nanoparticles (ERHNPs) modified with angiopep-2 (ANG) to facilitate the delivery of the antiepileptic drug phenytoin sodium. The resulting ANG-ERHNPs had an average diameter of (102.3±16.8) nm and were electro-sensitive with regard to particle size and drug release in vitro. ANG-ERHNPs have the characteristics of penetrate the BBB easily, resulting in a higher distribution in the central system. The improved antiepileptic effects were investigated with the amygdala kindling model. The results demonstrate that the ANG-ERHNPs were able to transport antiepileptic drugs into the brain and release them under electroencephalograph epileptiform abnormalities to greatly improve the therapeutic index of existing drugs in clinical use.
Keywords: blood-brain barrier; drug delivery; epilepsy; hydrogels; nanoparticles.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.