Many embryonic lethal engrailed (enlethal) mutations are known to partially complement the cuticular defects of the original engrailed mutation, en1. To explore the nature of this complementation, the adult phenotypes of several different en1/enlethal transheterozygotes were compared with the corresponding patterns of engrailed protein expression in third larval instar imaginal discs (determined by immunofluorescence). Transheterozygotes of en1 and deletions of the locus (enDf) typically show slight complementation in the adult cuticle. The pattern of engrailed protein expression in some en1/enDf wing discs is indistinguishable from en1 homozygotes, but in others the pattern is nearly normal. en1/enDf leg discs appear to express engrailed protein normally. Transheterozygotes of en1 and EMS-induced, cytologically normal enlethal alleles have almost normal adult cuticle phenotypes and also exhibit normal patterns of engrailed protein expression in all of the thoracic imaginal discs. Surprisingly, the intensity of anti-engrailed staining in these discs is elevated relative to that in wild type. en2 is an unusual lethal allele in that it does not complement either the en1 adult cuticle phenotype or the protein expression pattern in imaginal discs. Moreover, the cytologically normal enlethal alleles also complement en2, at least partially. Both wing and leg imaginal discs from en2/enlethal transheterozygotes show abnormal patterns of engrailed protein expression. These results are discussed in the context of an autoregulatory model for engrailed regulation.