Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce (Lactuca sativa L.)

Chemosphere. 2014 Oct:112:282-8. doi: 10.1016/j.chemosphere.2014.04.077. Epub 2014 May 20.

Abstract

Metals are always found in the environment as mixtures rather than as solitary elements. However, effect models such as biotic ligand models (BLMs) are usually derived for toxicity prediction of single metals. Our study aimed at predicting mixture toxicity of Cu-Ni, Cu-Zn and Cu-Ag combinations to lettuce (Lactucasativa L.) by combining BLMs with three toxicity indexes: the toxic unit, the overall amounts of metal ions bound to the biotic ligands and the toxic equivalency factor. The accumulation of metal ions at the biotic ligands was used to determine the toxic potency of metals alone or in combination. On the basis of parameters derived from toxicity assessment of individual metals, these three extended BLMs appeared to be all acceptable (p<0.0001) in assessing toxicity of diverse metal mixtures. The BLM-based approaches integrated competition between metal ions in assessing mixture toxicity and showed different predictive ability for each metal combination. The outcome of modeling suggested that the combined toxicity depends on the specific components of the metal mixtures. The best developed models assist in identifying the type of underlying toxic mechanisms of diverse metal mixtures in terrestrial plants.

Keywords: Biotic ligand models; Lettuce; Metal mixtures; Toxicity; Toxicity index.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Copper / toxicity
  • Dose-Response Relationship, Drug
  • Drug Interactions
  • Ecotoxicology / methods*
  • Environmental Pollutants / toxicity*
  • Hydrogen-Ion Concentration
  • Lactuca / drug effects*
  • Ligands
  • Metals, Heavy / toxicity*
  • Models, Biological*
  • Nickel / toxicity
  • Silver / toxicity
  • Zinc / toxicity

Substances

  • Environmental Pollutants
  • Ligands
  • Metals, Heavy
  • Silver
  • Copper
  • Nickel
  • Zinc