The plant Rubus alceaefolius Poir is used as a hepatic protectant in Traditional Chinese Medicine. The aim of the present study was to confirm the protective effect of the total alkaloids of Rubus alceaefolius Poir (TARAP) on the liver and to evaluate the potential molecular mechanisms associated with adipocytokines underlying non-alcoholic fatty liver disease (NAFLD) in rats. To generate the NAFLD model, Sprague-Dawley rats were administered a high‑fat diet and following 12 weeks of model construction, rats were orally treated with a positive control drug and different doses of TARAP daily for 28 days. The rats were then sacrificed and the livers were collected to evaluate the liver index (LI) and observe histological changes by hematoxylin and eosin (H&E) staining. The secretion levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were examined by ELISA. Finally, the expression levels of leptin (LEP), resistin and adiponectin (APN) in liver tissues were determined by immunohistochemistry (IHC). The results demonstrated that, in the group treated with methionine and choline bitartrate tablets and in the groups treated with different doses of TARAP, there was a significant reduction in the LI (P<0.05 or P<0.01), a downregulation of the secretion levels of ALT and AST, reduced levels of LEP and resistin and an increased expression of APN in the liver of NAFLD rats compared with the model group. Furthermore, the effect of TARAP treatment of NAFLD rats was dose dependent. In conclusion, TARAP is a potential agent for downregulating LEP and resistin and upregulating APN expression in rats with NAFLD. Furthermore, TARAP may be a potential candidate for improving treatment responses in patients with NAFLD.