Assessment of skeletal muscle proteolysis and the regulatory response to nutrition and exercise

IUBMB Life. 2014 Jul;66(7):478-84. doi: 10.1002/iub.1291. Epub 2014 Jul 23.

Abstract

Skeletal muscle proteolysis is highly regulated, involving complex intramuscular proteolytic systems that recognize and degrade muscle proteins, and recycle free amino acid precursors for protein synthesis and energy production. Autophagy-lysosomal, calpain, and caspase systems are contributors to muscle proteolysis, although the ubiquitin proteasome system (UPS) is the primary mechanism by which actomyosin fragments are degraded in healthy muscle. The UPS is sensitive to mechanical force and nutritional deprivation, as recent reports have demonstrated increased proteolytic gene expression and activity of the UPS in response to resistance and endurance exercise, and short-term negative energy balance. However, consuming dietary protein alone (or free amino acids), or as a primary component of a mixed meal, may attenuate intramuscular protein loss by down-regulating proteolytic gene expression and the catabolic activity of the UPS. Although these studies provide novel insight regarding the intramuscular regulation of skeletal muscle mass, the role of proteolysis in the regulation of skeletal muscle protein turnover in healthy human muscle is not well described. This article provides a contemporary review of the intramuscular regulation of skeletal muscle proteolysis in healthy muscle, methodological approaches to assess proteolysis, and highlights the effects of nutrition and exercise on skeletal muscle proteolysis.

Keywords: amino acids; exercise; lysosomes; protein breakdown; ubiquitin proteasome.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Exercise
  • Humans
  • Muscle Proteins / metabolism*
  • Muscle, Skeletal / metabolism*
  • Muscle, Skeletal / physiology
  • Nutritional Status
  • Proteolysis

Substances

  • Muscle Proteins