Autologous cell transplantation for the treatment of muscle damage is envisioned to involve the application of muscle precursor cells (MPCs) isolated from adult skeletal muscle. At the onset of trauma, these cells are recruited to proliferate and rebuild injured muscle fibres. However, a variety of donor-specific cues may directly influence the yield and quality of cells isolated from a muscle biopsy. In this study, we isolated human MPCs and assessed the role of donor gender and age on the ability of these MPCs to form functional bioengineered muscle. We analysed the cell yield, growth and molecular expression in vitro, and the muscle tissue formation and contractility of the bioengineered muscle, from cells isolated from men and women in three different age groups: young (20-39 years), adult (40-59 years) and elderly (60-80 years). Our results suggest that human MPCs can be successfully isolated and grown from patients of all ages and both genders. However, young female donors provide fast-growing cells in vitro with an optimum contractile output in vivo and are therefore an ideal cell source for muscle reconstruction. Taken together, these findings describe the donor-related limitations of MPC transplantation and provide insights for a straightforward and unbiased clinical application of these cells for muscle reconstruction. Copyright © 2014 John Wiley & Sons, Ltd.
Keywords: age; autologous transplant; clinical application; gender; muscle reconstruction.
Copyright © 2014 John Wiley & Sons, Ltd.